Derivations on Certain Semigroup Algebras
نویسنده
چکیده مقاله:
In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.
منابع مشابه
derivations on certain semigroup algebras
in the present paper we give a partially negative answer to a conjecture of ghahramani, runde and willis. we also discuss the derivation problem for both foundation semigroup algebras and clifford semigroup algebras. in particular, we prove that if s is a topological clifford semigroup for which es is finite, then h1(m(s),m(s))={0}.
متن کاملBiflatness of certain semigroup algebras
In the present paper, we consider biflatness of certain classes of semigroupalgebras. Indeed, we give a necessary condition for a band semigroup algebra to bebiflat and show that this condition is not sufficient. Also, for a certain class of inversesemigroups S, we show that the biflatness of ell^{1}(S)^{primeprime} is equivalent to the biprojectivity of ell^{1}(S).
متن کاملDerivations of Certain Operator Algebras
Let be a nest and let be a subalgebra of L(H) containing all rank one operators of alg . We give several conditions under which any derivation δ from into L(H) must be inner. The conditions include (1) H− ≠H, (2) 0+ ≠ 0, (3) there is a nontrivial projection in which is in , and (4) δ is norm continuous. We also give some applications.
متن کاملbiflatness of certain semigroup algebras
in the present paper, we consider biflatness of certain classes of semigroupalgebras. indeed, we give a necessary condition for a band semigroup algebra to bebiflat and show that this condition is not sufficient. also, for a certain class of inversesemigroups s, we show that the biflatness of ell^{1}(s)^{primeprime} is equivalent to the biprojectivity of ell^{1}(s).
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 18 شماره 4
صفحات 339- 345
تاریخ انتشار 2007-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023